3.6.23 \(\int \frac {1}{(d+e x) (a+c x^2)^4} \, dx\) [523]

3.6.23.1 Optimal result
3.6.23.2 Mathematica [A] (verified)
3.6.23.3 Rubi [A] (verified)
3.6.23.4 Maple [A] (verified)
3.6.23.5 Fricas [B] (verification not implemented)
3.6.23.6 Sympy [F(-1)]
3.6.23.7 Maxima [B] (verification not implemented)
3.6.23.8 Giac [B] (verification not implemented)
3.6.23.9 Mupad [B] (verification not implemented)

3.6.23.1 Optimal result

Integrand size = 17, antiderivative size = 295 \[ \int \frac {1}{(d+e x) \left (a+c x^2\right )^4} \, dx=\frac {a e+c d x}{6 a \left (c d^2+a e^2\right ) \left (a+c x^2\right )^3}+\frac {6 a^2 e^3+c d \left (5 c d^2+11 a e^2\right ) x}{24 a^2 \left (c d^2+a e^2\right )^2 \left (a+c x^2\right )^2}+\frac {8 a^3 e^5+c d \left (5 c^2 d^4+16 a c d^2 e^2+19 a^2 e^4\right ) x}{16 a^3 \left (c d^2+a e^2\right )^3 \left (a+c x^2\right )}+\frac {\sqrt {c} d \left (5 c^3 d^6+21 a c^2 d^4 e^2+35 a^2 c d^2 e^4+35 a^3 e^6\right ) \arctan \left (\frac {\sqrt {c} x}{\sqrt {a}}\right )}{16 a^{7/2} \left (c d^2+a e^2\right )^4}+\frac {e^7 \log (d+e x)}{\left (c d^2+a e^2\right )^4}-\frac {e^7 \log \left (a+c x^2\right )}{2 \left (c d^2+a e^2\right )^4} \]

output
1/6*(c*d*x+a*e)/a/(a*e^2+c*d^2)/(c*x^2+a)^3+1/24*(6*a^2*e^3+c*d*(11*a*e^2+ 
5*c*d^2)*x)/a^2/(a*e^2+c*d^2)^2/(c*x^2+a)^2+1/16*(8*a^3*e^5+c*d*(19*a^2*e^ 
4+16*a*c*d^2*e^2+5*c^2*d^4)*x)/a^3/(a*e^2+c*d^2)^3/(c*x^2+a)+e^7*ln(e*x+d) 
/(a*e^2+c*d^2)^4-1/2*e^7*ln(c*x^2+a)/(a*e^2+c*d^2)^4+1/16*d*(35*a^3*e^6+35 
*a^2*c*d^2*e^4+21*a*c^2*d^4*e^2+5*c^3*d^6)*arctan(x*c^(1/2)/a^(1/2))*c^(1/ 
2)/a^(7/2)/(a*e^2+c*d^2)^4
 
3.6.23.2 Mathematica [A] (verified)

Time = 0.23 (sec) , antiderivative size = 265, normalized size of antiderivative = 0.90 \[ \int \frac {1}{(d+e x) \left (a+c x^2\right )^4} \, dx=\frac {\frac {8 \left (c d^2+a e^2\right )^3 (a e+c d x)}{a \left (a+c x^2\right )^3}+\frac {2 \left (c d^2+a e^2\right )^2 \left (6 a^2 e^3+5 c^2 d^3 x+11 a c d e^2 x\right )}{a^2 \left (a+c x^2\right )^2}+\frac {3 \left (c d^2+a e^2\right ) \left (8 a^3 e^5+5 c^3 d^5 x+16 a c^2 d^3 e^2 x+19 a^2 c d e^4 x\right )}{a^3 \left (a+c x^2\right )}+\frac {3 \sqrt {c} d \left (5 c^3 d^6+21 a c^2 d^4 e^2+35 a^2 c d^2 e^4+35 a^3 e^6\right ) \arctan \left (\frac {\sqrt {c} x}{\sqrt {a}}\right )}{a^{7/2}}+48 e^7 \log (d+e x)-24 e^7 \log \left (a+c x^2\right )}{48 \left (c d^2+a e^2\right )^4} \]

input
Integrate[1/((d + e*x)*(a + c*x^2)^4),x]
 
output
((8*(c*d^2 + a*e^2)^3*(a*e + c*d*x))/(a*(a + c*x^2)^3) + (2*(c*d^2 + a*e^2 
)^2*(6*a^2*e^3 + 5*c^2*d^3*x + 11*a*c*d*e^2*x))/(a^2*(a + c*x^2)^2) + (3*( 
c*d^2 + a*e^2)*(8*a^3*e^5 + 5*c^3*d^5*x + 16*a*c^2*d^3*e^2*x + 19*a^2*c*d* 
e^4*x))/(a^3*(a + c*x^2)) + (3*Sqrt[c]*d*(5*c^3*d^6 + 21*a*c^2*d^4*e^2 + 3 
5*a^2*c*d^2*e^4 + 35*a^3*e^6)*ArcTan[(Sqrt[c]*x)/Sqrt[a]])/a^(7/2) + 48*e^ 
7*Log[d + e*x] - 24*e^7*Log[a + c*x^2])/(48*(c*d^2 + a*e^2)^4)
 
3.6.23.3 Rubi [A] (verified)

Time = 0.65 (sec) , antiderivative size = 360, normalized size of antiderivative = 1.22, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.529, Rules used = {496, 25, 686, 27, 686, 25, 27, 657, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (a+c x^2\right )^4 (d+e x)} \, dx\)

\(\Big \downarrow \) 496

\(\displaystyle \frac {a e+c d x}{6 a \left (a+c x^2\right )^3 \left (a e^2+c d^2\right )}-\frac {\int -\frac {5 c d^2+5 c e x d+6 a e^2}{(d+e x) \left (c x^2+a\right )^3}dx}{6 a \left (a e^2+c d^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {5 c d^2+5 c e x d+6 a e^2}{(d+e x) \left (c x^2+a\right )^3}dx}{6 a \left (a e^2+c d^2\right )}+\frac {a e+c d x}{6 a \left (a+c x^2\right )^3 \left (a e^2+c d^2\right )}\)

\(\Big \downarrow \) 686

\(\displaystyle \frac {\frac {6 a^2 e^3+c d x \left (11 a e^2+5 c d^2\right )}{4 a \left (a+c x^2\right )^2 \left (a e^2+c d^2\right )}-\frac {\int -\frac {3 c \left (5 c^2 d^4+11 a c e^2 d^2+c e \left (5 c d^2+11 a e^2\right ) x d+8 a^2 e^4\right )}{(d+e x) \left (c x^2+a\right )^2}dx}{4 a c \left (a e^2+c d^2\right )}}{6 a \left (a e^2+c d^2\right )}+\frac {a e+c d x}{6 a \left (a+c x^2\right )^3 \left (a e^2+c d^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {3 \int \frac {5 c^2 d^4+11 a c e^2 d^2+c e \left (5 c d^2+11 a e^2\right ) x d+8 a^2 e^4}{(d+e x) \left (c x^2+a\right )^2}dx}{4 a \left (a e^2+c d^2\right )}+\frac {6 a^2 e^3+c d x \left (11 a e^2+5 c d^2\right )}{4 a \left (a+c x^2\right )^2 \left (a e^2+c d^2\right )}}{6 a \left (a e^2+c d^2\right )}+\frac {a e+c d x}{6 a \left (a+c x^2\right )^3 \left (a e^2+c d^2\right )}\)

\(\Big \downarrow \) 686

\(\displaystyle \frac {\frac {3 \left (\frac {8 a^3 e^5+c d x \left (19 a^2 e^4+16 a c d^2 e^2+5 c^2 d^4\right )}{2 a \left (a+c x^2\right ) \left (a e^2+c d^2\right )}-\frac {\int -\frac {c \left (5 c^3 d^6+16 a c^2 e^2 d^4+19 a^2 c e^4 d^2+c e \left (5 c^2 d^4+16 a c e^2 d^2+19 a^2 e^4\right ) x d+16 a^3 e^6\right )}{(d+e x) \left (c x^2+a\right )}dx}{2 a c \left (a e^2+c d^2\right )}\right )}{4 a \left (a e^2+c d^2\right )}+\frac {6 a^2 e^3+c d x \left (11 a e^2+5 c d^2\right )}{4 a \left (a+c x^2\right )^2 \left (a e^2+c d^2\right )}}{6 a \left (a e^2+c d^2\right )}+\frac {a e+c d x}{6 a \left (a+c x^2\right )^3 \left (a e^2+c d^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {3 \left (\frac {\int \frac {c \left (5 c^3 d^6+16 a c^2 e^2 d^4+19 a^2 c e^4 d^2+c e \left (5 c^2 d^4+16 a c e^2 d^2+19 a^2 e^4\right ) x d+16 a^3 e^6\right )}{(d+e x) \left (c x^2+a\right )}dx}{2 a c \left (a e^2+c d^2\right )}+\frac {8 a^3 e^5+c d x \left (19 a^2 e^4+16 a c d^2 e^2+5 c^2 d^4\right )}{2 a \left (a+c x^2\right ) \left (a e^2+c d^2\right )}\right )}{4 a \left (a e^2+c d^2\right )}+\frac {6 a^2 e^3+c d x \left (11 a e^2+5 c d^2\right )}{4 a \left (a+c x^2\right )^2 \left (a e^2+c d^2\right )}}{6 a \left (a e^2+c d^2\right )}+\frac {a e+c d x}{6 a \left (a+c x^2\right )^3 \left (a e^2+c d^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {3 \left (\frac {\int \frac {5 c^3 d^6+16 a c^2 e^2 d^4+19 a^2 c e^4 d^2+c e \left (5 c^2 d^4+16 a c e^2 d^2+19 a^2 e^4\right ) x d+16 a^3 e^6}{(d+e x) \left (c x^2+a\right )}dx}{2 a \left (a e^2+c d^2\right )}+\frac {8 a^3 e^5+c d x \left (19 a^2 e^4+16 a c d^2 e^2+5 c^2 d^4\right )}{2 a \left (a+c x^2\right ) \left (a e^2+c d^2\right )}\right )}{4 a \left (a e^2+c d^2\right )}+\frac {6 a^2 e^3+c d x \left (11 a e^2+5 c d^2\right )}{4 a \left (a+c x^2\right )^2 \left (a e^2+c d^2\right )}}{6 a \left (a e^2+c d^2\right )}+\frac {a e+c d x}{6 a \left (a+c x^2\right )^3 \left (a e^2+c d^2\right )}\)

\(\Big \downarrow \) 657

\(\displaystyle \frac {\frac {3 \left (\frac {\int \left (\frac {16 a^3 e^8}{\left (c d^2+a e^2\right ) (d+e x)}+\frac {c \left (5 c^3 d^7+21 a c^2 e^2 d^5+35 a^2 c e^4 d^3+35 a^3 e^6 d-16 a^3 e^7 x\right )}{\left (c d^2+a e^2\right ) \left (c x^2+a\right )}\right )dx}{2 a \left (a e^2+c d^2\right )}+\frac {8 a^3 e^5+c d x \left (19 a^2 e^4+16 a c d^2 e^2+5 c^2 d^4\right )}{2 a \left (a+c x^2\right ) \left (a e^2+c d^2\right )}\right )}{4 a \left (a e^2+c d^2\right )}+\frac {6 a^2 e^3+c d x \left (11 a e^2+5 c d^2\right )}{4 a \left (a+c x^2\right )^2 \left (a e^2+c d^2\right )}}{6 a \left (a e^2+c d^2\right )}+\frac {a e+c d x}{6 a \left (a+c x^2\right )^3 \left (a e^2+c d^2\right )}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {6 a^2 e^3+c d x \left (11 a e^2+5 c d^2\right )}{4 a \left (a+c x^2\right )^2 \left (a e^2+c d^2\right )}+\frac {3 \left (\frac {-\frac {8 a^3 e^7 \log \left (a+c x^2\right )}{a e^2+c d^2}+\frac {16 a^3 e^7 \log (d+e x)}{a e^2+c d^2}+\frac {\sqrt {c} d \arctan \left (\frac {\sqrt {c} x}{\sqrt {a}}\right ) \left (35 a^3 e^6+35 a^2 c d^2 e^4+21 a c^2 d^4 e^2+5 c^3 d^6\right )}{\sqrt {a} \left (a e^2+c d^2\right )}}{2 a \left (a e^2+c d^2\right )}+\frac {8 a^3 e^5+c d x \left (19 a^2 e^4+16 a c d^2 e^2+5 c^2 d^4\right )}{2 a \left (a+c x^2\right ) \left (a e^2+c d^2\right )}\right )}{4 a \left (a e^2+c d^2\right )}}{6 a \left (a e^2+c d^2\right )}+\frac {a e+c d x}{6 a \left (a+c x^2\right )^3 \left (a e^2+c d^2\right )}\)

input
Int[1/((d + e*x)*(a + c*x^2)^4),x]
 
output
(a*e + c*d*x)/(6*a*(c*d^2 + a*e^2)*(a + c*x^2)^3) + ((6*a^2*e^3 + c*d*(5*c 
*d^2 + 11*a*e^2)*x)/(4*a*(c*d^2 + a*e^2)*(a + c*x^2)^2) + (3*((8*a^3*e^5 + 
 c*d*(5*c^2*d^4 + 16*a*c*d^2*e^2 + 19*a^2*e^4)*x)/(2*a*(c*d^2 + a*e^2)*(a 
+ c*x^2)) + ((Sqrt[c]*d*(5*c^3*d^6 + 21*a*c^2*d^4*e^2 + 35*a^2*c*d^2*e^4 + 
 35*a^3*e^6)*ArcTan[(Sqrt[c]*x)/Sqrt[a]])/(Sqrt[a]*(c*d^2 + a*e^2)) + (16* 
a^3*e^7*Log[d + e*x])/(c*d^2 + a*e^2) - (8*a^3*e^7*Log[a + c*x^2])/(c*d^2 
+ a*e^2))/(2*a*(c*d^2 + a*e^2))))/(4*a*(c*d^2 + a*e^2)))/(6*a*(c*d^2 + a*e 
^2))
 

3.6.23.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 496
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[ 
(-(a*d + b*c*x))*(c + d*x)^(n + 1)*((a + b*x^2)^(p + 1)/(2*a*(p + 1)*(b*c^2 
 + a*d^2))), x] + Simp[1/(2*a*(p + 1)*(b*c^2 + a*d^2))   Int[(c + d*x)^n*(a 
 + b*x^2)^(p + 1)*Simp[b*c^2*(2*p + 3) + a*d^2*(n + 2*p + 3) + b*c*d*(n + 2 
*p + 4)*x, x], x], x] /; FreeQ[{a, b, c, d, n}, x] && LtQ[p, -1] && IntQuad 
raticQ[a, 0, b, c, d, n, p, x]
 

rule 657
Int[(((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.))/((a_) + (c_.)*( 
x_)^2), x_Symbol] :> Int[ExpandIntegrand[(d + e*x)^m*((f + g*x)^n/(a + c*x^ 
2)), x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && IntegersQ[n]
 

rule 686
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p 
_), x_Symbol] :> Simp[(-(d + e*x)^(m + 1))*(f*a*c*e - a*g*c*d + c*(c*d*f + 
a*e*g)*x)*((a + c*x^2)^(p + 1)/(2*a*c*(p + 1)*(c*d^2 + a*e^2))), x] + Simp[ 
1/(2*a*c*(p + 1)*(c*d^2 + a*e^2))   Int[(d + e*x)^m*(a + c*x^2)^(p + 1)*Sim 
p[f*(c^2*d^2*(2*p + 3) + a*c*e^2*(m + 2*p + 3)) - a*c*d*e*g*m + c*e*(c*d*f 
+ a*e*g)*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && LtQ 
[p, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.6.23.4 Maple [A] (verified)

Time = 2.28 (sec) , antiderivative size = 390, normalized size of antiderivative = 1.32

method result size
default \(\frac {c \left (\frac {\frac {c^{2} d \left (19 e^{6} a^{3}+35 d^{2} e^{4} a^{2} c +21 d^{4} e^{2} c^{2} a +5 c^{3} d^{6}\right ) x^{5}}{16 a^{3}}+\left (\frac {1}{2} a \,e^{7} c +\frac {1}{2} d^{2} e^{5} c^{2}\right ) x^{4}+\frac {c d \left (17 e^{6} a^{3}+33 d^{2} e^{4} a^{2} c +21 d^{4} e^{2} c^{2} a +5 c^{3} d^{6}\right ) x^{3}}{6 a^{2}}+\left (\frac {5}{4} a^{2} e^{7}+\frac {3}{2} a \,d^{2} e^{5} c +\frac {1}{4} c^{2} d^{4} e^{3}\right ) x^{2}+\frac {d \left (29 e^{6} a^{3}+61 d^{2} e^{4} a^{2} c +43 d^{4} e^{2} c^{2} a +11 c^{3} d^{6}\right ) x}{16 a}+\frac {e \left (11 e^{6} a^{3}+18 d^{2} e^{4} a^{2} c +9 d^{4} e^{2} c^{2} a +2 c^{3} d^{6}\right )}{12 c}}{\left (c \,x^{2}+a \right )^{3}}+\frac {-\frac {8 a^{3} e^{7} \ln \left (c \,x^{2}+a \right )}{c}+\frac {\left (35 a^{3} d \,e^{6}+35 a^{2} c \,d^{3} e^{4}+21 a \,c^{2} d^{5} e^{2}+5 c^{3} d^{7}\right ) \arctan \left (\frac {c x}{\sqrt {a c}}\right )}{\sqrt {a c}}}{16 a^{3}}\right )}{\left (e^{2} a +c \,d^{2}\right )^{4}}+\frac {e^{7} \ln \left (e x +d \right )}{\left (e^{2} a +c \,d^{2}\right )^{4}}\) \(390\)
risch \(\text {Expression too large to display}\) \(1139\)

input
int(1/(e*x+d)/(c*x^2+a)^4,x,method=_RETURNVERBOSE)
 
output
c/(a*e^2+c*d^2)^4*((1/16*c^2*d*(19*a^3*e^6+35*a^2*c*d^2*e^4+21*a*c^2*d^4*e 
^2+5*c^3*d^6)/a^3*x^5+(1/2*a*e^7*c+1/2*d^2*e^5*c^2)*x^4+1/6*c*d*(17*a^3*e^ 
6+33*a^2*c*d^2*e^4+21*a*c^2*d^4*e^2+5*c^3*d^6)/a^2*x^3+(5/4*a^2*e^7+3/2*a* 
d^2*e^5*c+1/4*c^2*d^4*e^3)*x^2+1/16*d*(29*a^3*e^6+61*a^2*c*d^2*e^4+43*a*c^ 
2*d^4*e^2+11*c^3*d^6)/a*x+1/12*e*(11*a^3*e^6+18*a^2*c*d^2*e^4+9*a*c^2*d^4* 
e^2+2*c^3*d^6)/c)/(c*x^2+a)^3+1/16/a^3*(-8*a^3*e^7/c*ln(c*x^2+a)+(35*a^3*d 
*e^6+35*a^2*c*d^3*e^4+21*a*c^2*d^5*e^2+5*c^3*d^7)/(a*c)^(1/2)*arctan(c*x/( 
a*c)^(1/2))))+e^7*ln(e*x+d)/(a*e^2+c*d^2)^4
 
3.6.23.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 880 vs. \(2 (277) = 554\).

Time = 12.85 (sec) , antiderivative size = 1784, normalized size of antiderivative = 6.05 \[ \int \frac {1}{(d+e x) \left (a+c x^2\right )^4} \, dx=\text {Too large to display} \]

input
integrate(1/(e*x+d)/(c*x^2+a)^4,x, algorithm="fricas")
 
output
[1/96*(16*a^3*c^3*d^6*e + 72*a^4*c^2*d^4*e^3 + 144*a^5*c*d^2*e^5 + 88*a^6* 
e^7 + 6*(5*c^6*d^7 + 21*a*c^5*d^5*e^2 + 35*a^2*c^4*d^3*e^4 + 19*a^3*c^3*d* 
e^6)*x^5 + 48*(a^3*c^3*d^2*e^5 + a^4*c^2*e^7)*x^4 + 16*(5*a*c^5*d^7 + 21*a 
^2*c^4*d^5*e^2 + 33*a^3*c^3*d^3*e^4 + 17*a^4*c^2*d*e^6)*x^3 + 24*(a^3*c^3* 
d^4*e^3 + 6*a^4*c^2*d^2*e^5 + 5*a^5*c*e^7)*x^2 + 3*(5*a^3*c^3*d^7 + 21*a^4 
*c^2*d^5*e^2 + 35*a^5*c*d^3*e^4 + 35*a^6*d*e^6 + (5*c^6*d^7 + 21*a*c^5*d^5 
*e^2 + 35*a^2*c^4*d^3*e^4 + 35*a^3*c^3*d*e^6)*x^6 + 3*(5*a*c^5*d^7 + 21*a^ 
2*c^4*d^5*e^2 + 35*a^3*c^3*d^3*e^4 + 35*a^4*c^2*d*e^6)*x^4 + 3*(5*a^2*c^4* 
d^7 + 21*a^3*c^3*d^5*e^2 + 35*a^4*c^2*d^3*e^4 + 35*a^5*c*d*e^6)*x^2)*sqrt( 
-c/a)*log((c*x^2 + 2*a*x*sqrt(-c/a) - a)/(c*x^2 + a)) + 6*(11*a^2*c^4*d^7 
+ 43*a^3*c^3*d^5*e^2 + 61*a^4*c^2*d^3*e^4 + 29*a^5*c*d*e^6)*x - 48*(a^3*c^ 
3*e^7*x^6 + 3*a^4*c^2*e^7*x^4 + 3*a^5*c*e^7*x^2 + a^6*e^7)*log(c*x^2 + a) 
+ 96*(a^3*c^3*e^7*x^6 + 3*a^4*c^2*e^7*x^4 + 3*a^5*c*e^7*x^2 + a^6*e^7)*log 
(e*x + d))/(a^6*c^4*d^8 + 4*a^7*c^3*d^6*e^2 + 6*a^8*c^2*d^4*e^4 + 4*a^9*c* 
d^2*e^6 + a^10*e^8 + (a^3*c^7*d^8 + 4*a^4*c^6*d^6*e^2 + 6*a^5*c^5*d^4*e^4 
+ 4*a^6*c^4*d^2*e^6 + a^7*c^3*e^8)*x^6 + 3*(a^4*c^6*d^8 + 4*a^5*c^5*d^6*e^ 
2 + 6*a^6*c^4*d^4*e^4 + 4*a^7*c^3*d^2*e^6 + a^8*c^2*e^8)*x^4 + 3*(a^5*c^5* 
d^8 + 4*a^6*c^4*d^6*e^2 + 6*a^7*c^3*d^4*e^4 + 4*a^8*c^2*d^2*e^6 + a^9*c*e^ 
8)*x^2), 1/48*(8*a^3*c^3*d^6*e + 36*a^4*c^2*d^4*e^3 + 72*a^5*c*d^2*e^5 + 4 
4*a^6*e^7 + 3*(5*c^6*d^7 + 21*a*c^5*d^5*e^2 + 35*a^2*c^4*d^3*e^4 + 19*a...
 
3.6.23.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(d+e x) \left (a+c x^2\right )^4} \, dx=\text {Timed out} \]

input
integrate(1/(e*x+d)/(c*x**2+a)**4,x)
 
output
Timed out
 
3.6.23.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 655 vs. \(2 (277) = 554\).

Time = 0.30 (sec) , antiderivative size = 655, normalized size of antiderivative = 2.22 \[ \int \frac {1}{(d+e x) \left (a+c x^2\right )^4} \, dx=-\frac {e^{7} \log \left (c x^{2} + a\right )}{2 \, {\left (c^{4} d^{8} + 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} + 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}\right )}} + \frac {e^{7} \log \left (e x + d\right )}{c^{4} d^{8} + 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} + 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}} + \frac {{\left (5 \, c^{4} d^{7} + 21 \, a c^{3} d^{5} e^{2} + 35 \, a^{2} c^{2} d^{3} e^{4} + 35 \, a^{3} c d e^{6}\right )} \arctan \left (\frac {c x}{\sqrt {a c}}\right )}{16 \, {\left (a^{3} c^{4} d^{8} + 4 \, a^{4} c^{3} d^{6} e^{2} + 6 \, a^{5} c^{2} d^{4} e^{4} + 4 \, a^{6} c d^{2} e^{6} + a^{7} e^{8}\right )} \sqrt {a c}} + \frac {24 \, a^{3} c^{2} e^{5} x^{4} + 8 \, a^{3} c^{2} d^{4} e + 28 \, a^{4} c d^{2} e^{3} + 44 \, a^{5} e^{5} + 3 \, {\left (5 \, c^{5} d^{5} + 16 \, a c^{4} d^{3} e^{2} + 19 \, a^{2} c^{3} d e^{4}\right )} x^{5} + 8 \, {\left (5 \, a c^{4} d^{5} + 16 \, a^{2} c^{3} d^{3} e^{2} + 17 \, a^{3} c^{2} d e^{4}\right )} x^{3} + 12 \, {\left (a^{3} c^{2} d^{2} e^{3} + 5 \, a^{4} c e^{5}\right )} x^{2} + 3 \, {\left (11 \, a^{2} c^{3} d^{5} + 32 \, a^{3} c^{2} d^{3} e^{2} + 29 \, a^{4} c d e^{4}\right )} x}{48 \, {\left (a^{6} c^{3} d^{6} + 3 \, a^{7} c^{2} d^{4} e^{2} + 3 \, a^{8} c d^{2} e^{4} + a^{9} e^{6} + {\left (a^{3} c^{6} d^{6} + 3 \, a^{4} c^{5} d^{4} e^{2} + 3 \, a^{5} c^{4} d^{2} e^{4} + a^{6} c^{3} e^{6}\right )} x^{6} + 3 \, {\left (a^{4} c^{5} d^{6} + 3 \, a^{5} c^{4} d^{4} e^{2} + 3 \, a^{6} c^{3} d^{2} e^{4} + a^{7} c^{2} e^{6}\right )} x^{4} + 3 \, {\left (a^{5} c^{4} d^{6} + 3 \, a^{6} c^{3} d^{4} e^{2} + 3 \, a^{7} c^{2} d^{2} e^{4} + a^{8} c e^{6}\right )} x^{2}\right )}} \]

input
integrate(1/(e*x+d)/(c*x^2+a)^4,x, algorithm="maxima")
 
output
-1/2*e^7*log(c*x^2 + a)/(c^4*d^8 + 4*a*c^3*d^6*e^2 + 6*a^2*c^2*d^4*e^4 + 4 
*a^3*c*d^2*e^6 + a^4*e^8) + e^7*log(e*x + d)/(c^4*d^8 + 4*a*c^3*d^6*e^2 + 
6*a^2*c^2*d^4*e^4 + 4*a^3*c*d^2*e^6 + a^4*e^8) + 1/16*(5*c^4*d^7 + 21*a*c^ 
3*d^5*e^2 + 35*a^2*c^2*d^3*e^4 + 35*a^3*c*d*e^6)*arctan(c*x/sqrt(a*c))/((a 
^3*c^4*d^8 + 4*a^4*c^3*d^6*e^2 + 6*a^5*c^2*d^4*e^4 + 4*a^6*c*d^2*e^6 + a^7 
*e^8)*sqrt(a*c)) + 1/48*(24*a^3*c^2*e^5*x^4 + 8*a^3*c^2*d^4*e + 28*a^4*c*d 
^2*e^3 + 44*a^5*e^5 + 3*(5*c^5*d^5 + 16*a*c^4*d^3*e^2 + 19*a^2*c^3*d*e^4)* 
x^5 + 8*(5*a*c^4*d^5 + 16*a^2*c^3*d^3*e^2 + 17*a^3*c^2*d*e^4)*x^3 + 12*(a^ 
3*c^2*d^2*e^3 + 5*a^4*c*e^5)*x^2 + 3*(11*a^2*c^3*d^5 + 32*a^3*c^2*d^3*e^2 
+ 29*a^4*c*d*e^4)*x)/(a^6*c^3*d^6 + 3*a^7*c^2*d^4*e^2 + 3*a^8*c*d^2*e^4 + 
a^9*e^6 + (a^3*c^6*d^6 + 3*a^4*c^5*d^4*e^2 + 3*a^5*c^4*d^2*e^4 + a^6*c^3*e 
^6)*x^6 + 3*(a^4*c^5*d^6 + 3*a^5*c^4*d^4*e^2 + 3*a^6*c^3*d^2*e^4 + a^7*c^2 
*e^6)*x^4 + 3*(a^5*c^4*d^6 + 3*a^6*c^3*d^4*e^2 + 3*a^7*c^2*d^2*e^4 + a^8*c 
*e^6)*x^2)
 
3.6.23.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 562 vs. \(2 (277) = 554\).

Time = 0.28 (sec) , antiderivative size = 562, normalized size of antiderivative = 1.91 \[ \int \frac {1}{(d+e x) \left (a+c x^2\right )^4} \, dx=\frac {e^{8} \log \left ({\left | e x + d \right |}\right )}{c^{4} d^{8} e + 4 \, a c^{3} d^{6} e^{3} + 6 \, a^{2} c^{2} d^{4} e^{5} + 4 \, a^{3} c d^{2} e^{7} + a^{4} e^{9}} - \frac {e^{7} \log \left (c x^{2} + a\right )}{2 \, {\left (c^{4} d^{8} + 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} + 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}\right )}} + \frac {{\left (5 \, c^{4} d^{7} + 21 \, a c^{3} d^{5} e^{2} + 35 \, a^{2} c^{2} d^{3} e^{4} + 35 \, a^{3} c d e^{6}\right )} \arctan \left (\frac {c x}{\sqrt {a c}}\right )}{16 \, {\left (a^{3} c^{4} d^{8} + 4 \, a^{4} c^{3} d^{6} e^{2} + 6 \, a^{5} c^{2} d^{4} e^{4} + 4 \, a^{6} c d^{2} e^{6} + a^{7} e^{8}\right )} \sqrt {a c}} + \frac {8 \, a^{3} c^{3} d^{6} e + 36 \, a^{4} c^{2} d^{4} e^{3} + 72 \, a^{5} c d^{2} e^{5} + 44 \, a^{6} e^{7} + 3 \, {\left (5 \, c^{6} d^{7} + 21 \, a c^{5} d^{5} e^{2} + 35 \, a^{2} c^{4} d^{3} e^{4} + 19 \, a^{3} c^{3} d e^{6}\right )} x^{5} + 24 \, {\left (a^{3} c^{3} d^{2} e^{5} + a^{4} c^{2} e^{7}\right )} x^{4} + 8 \, {\left (5 \, a c^{5} d^{7} + 21 \, a^{2} c^{4} d^{5} e^{2} + 33 \, a^{3} c^{3} d^{3} e^{4} + 17 \, a^{4} c^{2} d e^{6}\right )} x^{3} + 12 \, {\left (a^{3} c^{3} d^{4} e^{3} + 6 \, a^{4} c^{2} d^{2} e^{5} + 5 \, a^{5} c e^{7}\right )} x^{2} + 3 \, {\left (11 \, a^{2} c^{4} d^{7} + 43 \, a^{3} c^{3} d^{5} e^{2} + 61 \, a^{4} c^{2} d^{3} e^{4} + 29 \, a^{5} c d e^{6}\right )} x}{48 \, {\left (c d^{2} + a e^{2}\right )}^{4} {\left (c x^{2} + a\right )}^{3} a^{3}} \]

input
integrate(1/(e*x+d)/(c*x^2+a)^4,x, algorithm="giac")
 
output
e^8*log(abs(e*x + d))/(c^4*d^8*e + 4*a*c^3*d^6*e^3 + 6*a^2*c^2*d^4*e^5 + 4 
*a^3*c*d^2*e^7 + a^4*e^9) - 1/2*e^7*log(c*x^2 + a)/(c^4*d^8 + 4*a*c^3*d^6* 
e^2 + 6*a^2*c^2*d^4*e^4 + 4*a^3*c*d^2*e^6 + a^4*e^8) + 1/16*(5*c^4*d^7 + 2 
1*a*c^3*d^5*e^2 + 35*a^2*c^2*d^3*e^4 + 35*a^3*c*d*e^6)*arctan(c*x/sqrt(a*c 
))/((a^3*c^4*d^8 + 4*a^4*c^3*d^6*e^2 + 6*a^5*c^2*d^4*e^4 + 4*a^6*c*d^2*e^6 
 + a^7*e^8)*sqrt(a*c)) + 1/48*(8*a^3*c^3*d^6*e + 36*a^4*c^2*d^4*e^3 + 72*a 
^5*c*d^2*e^5 + 44*a^6*e^7 + 3*(5*c^6*d^7 + 21*a*c^5*d^5*e^2 + 35*a^2*c^4*d 
^3*e^4 + 19*a^3*c^3*d*e^6)*x^5 + 24*(a^3*c^3*d^2*e^5 + a^4*c^2*e^7)*x^4 + 
8*(5*a*c^5*d^7 + 21*a^2*c^4*d^5*e^2 + 33*a^3*c^3*d^3*e^4 + 17*a^4*c^2*d*e^ 
6)*x^3 + 12*(a^3*c^3*d^4*e^3 + 6*a^4*c^2*d^2*e^5 + 5*a^5*c*e^7)*x^2 + 3*(1 
1*a^2*c^4*d^7 + 43*a^3*c^3*d^5*e^2 + 61*a^4*c^2*d^3*e^4 + 29*a^5*c*d*e^6)* 
x)/((c*d^2 + a*e^2)^4*(c*x^2 + a)^3*a^3)
 
3.6.23.9 Mupad [B] (verification not implemented)

Time = 10.85 (sec) , antiderivative size = 1470, normalized size of antiderivative = 4.98 \[ \int \frac {1}{(d+e x) \left (a+c x^2\right )^4} \, dx=\text {Too large to display} \]

input
int(1/((a + c*x^2)^4*(d + e*x)),x)
 
output
((11*a^2*e^5 + 2*c^2*d^4*e + 7*a*c*d^2*e^3)/(12*(a^3*e^6 + c^3*d^6 + 3*a*c 
^2*d^4*e^2 + 3*a^2*c*d^2*e^4)) + (x^2*(c^2*d^2*e^3 + 5*a*c*e^5))/(4*(a^3*e 
^6 + c^3*d^6 + 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4)) + (x*(11*c^3*d^5 + 32*a 
*c^2*d^3*e^2 + 29*a^2*c*d*e^4))/(16*a*(a^3*e^6 + c^3*d^6 + 3*a*c^2*d^4*e^2 
 + 3*a^2*c*d^2*e^4)) + (c^2*e^5*x^4)/(2*(a^3*e^6 + c^3*d^6 + 3*a*c^2*d^4*e 
^2 + 3*a^2*c*d^2*e^4)) + (x^3*(5*c^4*d^5 + 16*a*c^3*d^3*e^2 + 17*a^2*c^2*d 
*e^4))/(6*a^2*(a^3*e^6 + c^3*d^6 + 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4)) + ( 
x^5*(5*c^5*d^5 + 16*a*c^4*d^3*e^2 + 19*a^2*c^3*d*e^4))/(16*a^3*(a^3*e^6 + 
c^3*d^6 + 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4)))/(a^3 + c^3*x^6 + 3*a^2*c*x^ 
2 + 3*a*c^2*x^4) + (e^7*log(d + e*x))/(a*e^2 + c*d^2)^4 - (log(25*a^7*c^10 
*d^18*x - 2304*a^13*e^18*(-a^7*c)^(1/2) - 25*a^4*c^9*d^18*(-a^7*c)^(1/2) + 
 5833*a^5*d^2*e^16*(-a^7*c)^(3/2) + 3612*c^5*d^12*e^6*(-a^7*c)^(3/2) + 230 
4*a^16*c*e^18*x + 9660*a^2*c^3*d^8*e^10*(-a^7*c)^(3/2) + 8820*a^3*c^2*d^6* 
e^12*(-a^7*c)^(3/2) - 260*a^5*c^8*d^16*e^2*(-a^7*c)^(1/2) - 1236*a^6*c^7*d 
^14*e^4*(-a^7*c)^(1/2) + 260*a^8*c^9*d^16*e^2*x + 1236*a^9*c^8*d^14*e^4*x 
+ 3612*a^10*c^7*d^12*e^6*x + 7126*a^11*c^6*d^10*e^8*x + 9660*a^12*c^5*d^8* 
e^10*x + 8820*a^13*c^4*d^6*e^12*x + 7204*a^14*c^3*d^4*e^14*x + 5833*a^15*c 
^2*d^2*e^16*x + 7126*a*c^4*d^10*e^8*(-a^7*c)^(3/2) + 7204*a^4*c*d^4*e^14*( 
-a^7*c)^(3/2))*(16*a^7*e^7 + 5*c^3*d^7*(-a^7*c)^(1/2) + 35*a^3*d*e^6*(-a^7 
*c)^(1/2) + 21*a*c^2*d^5*e^2*(-a^7*c)^(1/2) + 35*a^2*c*d^3*e^4*(-a^7*c)...